Proof that the equality of a compare function corresponds to propositional equality.
- eq_of_cmp : ∀ {a a' : α}, cmp a a' = Ordering.eq → a = a'
Instances
Proof that the equality of a compare function corresponds to propositional equality and vice versa.
- eq_of_cmp : ∀ {a a' : α}, cmp a a' = Ordering.eq → a = a'
- cmp_rfl : ∀ {a : α}, cmp a a = Ordering.eq
Instances
@[simp]
theorem
Lake.cmp_iff_eq
{α : Type u_1}
{cmp : α → α → Ordering}
{a a' : α}
[Lake.LawfulCmpEq α cmp]
:
cmp a a' = Ordering.eq ↔ a = a'
Proof that the equality of a compare function corresponds to propositional equality with respect to a given function.
- eq_of_cmp_wrt : ∀ {a a' : α}, cmp a a' = Ordering.eq → f a = f a'
Instances
instance
Lake.instEqOfCmpWrtOfEqOfCmp
{α : Type u_1}
{cmp : α → α → Ordering}
{β✝ : Type u_2}
{f : α → β✝}
[Lake.EqOfCmp α cmp]
:
Lake.EqOfCmpWrt α f cmp
theorem
Lake.eq_of_compareOfLessAndEq
{α : Type u_1}
[LT α]
[DecidableEq α]
{a a' : α}
[Decidable (a < a')]
(h : compareOfLessAndEq a a' = Ordering.eq)
:
a = a'
theorem
Lake.compareOfLessAndEq_rfl
{α : Type u_1}
[LT α]
[DecidableEq α]
{a : α}
[Decidable (a < a)]
(lt_irrefl : ¬a < a)
: